Week 8: Differentiation Methods

MA161/MA1161: Semester 1 Calculus.

Prof. Götz Pfeiffer

School of Mathematics, Statistics and Applied Mathematics NUI Galway

November 16-17, 2020

Differentiation Rules.

- The following rules allow us to find derivatives without calling on First Principles. If y = f(x), we use y' for $f'(x) = \frac{d}{dx}f(x)$.
- The **Power Rule** for $(x^n)'$.
- The Constant Multiple Rule for (c f(x))'.
- The **Sum Rule** for (f(x) + g(x))'.
- The **Difference Rule** for (f(x) g(x))'.
- A rule for (e^x)['].
- The **Product Rule** for $(f(x) \cdot g(x))'$.
- The **Quotient Rule** for (f(x)/g(x))'.
- Derivatives of Trigonometric Functions.
- The Chain Rule for (f(g(x)))'.

Power Rule.

• By First Principles: (x)' = 1, $(x^2)' = 2x$, $(x^3)' = 3x^2$, $(x^4)' = 4x^3$.

- (1) Power Rule. $\frac{d}{dx}x^n = nx^{n-1}$, for $n \in \mathbb{N}$.
 - **Proof.** Let $f(x) = x^n$. By the **Binomial Theorem**, $(x+h)^n = x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n-1} x h^{n-1} + h^n$, whence $f(x+h) f(x) = h \left(n x^{n-1} + \binom{n}{2} x^{n-2} h + \dots + h^{n-1} \right)$. So $\frac{f(x+h)-f(x)}{h} \longrightarrow n x^{n-1}$ as $h \longrightarrow 0$.
 - In fact, this result extends to any real exponent a:
- (1*) Power Rule. $\frac{d}{dx}x^{\alpha} = \alpha x^{\alpha-1}$ for any $\alpha \in \mathbb{R}$.

• Examples. $(\frac{1}{x})' = (x^{-1})' = -x^{-2}; (\sqrt{x})' = (x^{1/2})' = \frac{1}{2}x^{-1/2}.$

New Derivatives from Old.

- When a new function f is formed from old functions by addition, subtraction, or muliplying by a constant, the derivative f' can be calculated from the derivatives of the old functions.
- (2) Constant Multiple Rule. (cf)' = cf' if $c \in \mathbb{R}$ is any constant.
 - **Proof.** Let g(x) = c f(x). Then

$$\begin{split} g'(x) &= \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{c \, f(x+h) - c \, f(x)}{h} \\ &= \lim_{h \to 0} c \, \frac{f(x+h) - f(x)}{h} = c \, \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = c \, f'(x), \end{split}$$

by the Constant Multiple Law for limits.

- Examples. $(3x^4)' = 3(x^4)' = 3 \cdot 4x^3 = 12x^3$.
- $\frac{d}{dx}(-x) = \frac{d}{dx}((-1)x) = -\frac{d}{dx}(x) = -1.$

Sums and Differences.

- The derivative of a sum of functions is the sum of the derivatives.
- (3) Sum Rule: (f+g)' = f' + g' if both f and g are differentiable.
- (4) Difference Rule: (f g)' = f' g' if both f' and g' exist.
 - Together, rules (0) (4) determine derivatives of polynomials.
 - **Example.** Differentiate $f(x) = 3x^4 5x^2 + 7$.
 - Solution: $f'(x) = (3x^4 5x^2 + 7)' \stackrel{(3,4)}{=} (3x^4)' (5x^2)' + (7)'$ $\stackrel{(0,2)}{=} 3(x^4)' - 5(x^2)' \stackrel{(1)}{=} 3 \cdot 4x^3 - 5 \cdot 2x = 12x^3 - 10x.$

- Find the acceleration of an object with $s(t) = 2t^3 5t^2 + 3t + 4$.
- **Solution:** $v(t) = s'(t) = (2t^3 5t^2 + 3t + 4)' = 6t^2 10t + 3$. $a(t) = v'(t) = (6t^2 10t + 3)' = 12t 10$. So, e.g., a(2) = 14.

Derivatives of Exponential Functions.

- Let's try and compute f' for $f(x) = a^x$ from first principles.
- As $a^{x+h} a^x = a^x a^h a^x = a^x (a^h 1)$, we find that

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h} = f'(0) a^x.$$

- The derivative of an exponential function f(x) = a^x is, remarkably, a constant multiple of the function f(x) itself:
- If $f(x) = a^x$ then $f'(x) = f'(0) a^x$.
- Euler's number e=2.71828... has the property $\lim_{h\to 0} \frac{e^h-1}{h}=1.$
- (5) Derivative of the Exponential Function: $(e^x)' = e^x$.
 - The rate of change of e^x equals e^x . More on this later . . .

Products of Functions.

- The derivative of a product is not the product of the derivatives.
- **Example.** If f(x) = g(x) = x then f'(x) = g'(x) = 1 = f'(x) g'(x). But $(fg)(x) = f(x) g(x) = x^2$ and $(fg)'(x) = 2x \neq 1$.
- Let's see why. Suppose u = f(x) and v = g(x) are two quantities.

μ Δν

 11ν

11.

Διι Δι

νΔυ

 Δu

- The product uv is the size of a rectangle.
- If x changes by Δx then $\Delta u = f(x + \Delta x) - f(x)$, and $\Delta v = \dots$
- $(u + \Delta u)(v + \Delta v)$ is the larger rectangle.
- $\Delta(uv) = u \Delta v + v \Delta u + \Delta u \Delta v$.

•
$$\frac{\Delta(uv)}{\Delta x} = u\frac{\Delta v}{\Delta x} + v\frac{\Delta u}{\Delta x} + \Delta u\frac{\Delta v}{\Delta x} \stackrel{\Delta x \to 0}{\longrightarrow} u\frac{dv}{dx} + v\frac{du}{dx} + 0 \cdot \frac{dv}{dx}$$
.

• Thus, in Leibniz notation, $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$.

The Product Rule.

- (6) **Product Rule:** If both f and g are differentiable functions then (f g)' = f g' + g f'.
 - In words, the derivative of a product is a sum of mixed terms, each the product of one function and the derivative of the other.
 - **Example.** For $f(x) = x e^x$, find f'(x), f''(x), ..., $f^{(n)}(x)$.
 - Solution: $f'(x) = (x e^x)' = x (e^x)' + e^x (x)'$

$$= x e^{x} + e^{x} \cdot 1 = (x+1) e^{x}$$

• $f''(x) = ((x+1)e^x)' = (x+1)(e^x)' + e^x(x+1)'$

$$= (x+1) e^{x} + e^{x} \cdot 1 = (x+2) e^{x}$$

- $f'''(x) = ((x+2)e^x)' = \cdots = (x+3)e^x$,
- ...
- $f^{(n)}(x) = (x + n) e^x$.

Applications of the Product Rule.

- **Example.** If $f(x) = \sqrt{x} g(x)$, g(4) = 2 and g'(4) = 3, find f'(4).
- Solution: $f'(x) = (\sqrt{x} g(x))' = \sqrt{x} g'(x) + \frac{g(x)}{2\sqrt{x}}$. Hence $f'(4) = \sqrt{4} g'(4) + \frac{g(4)}{2\sqrt{4}} = 2 \cdot 3 + \frac{2}{4} = \frac{13}{2}$.
- Sometimes there are alternatives to using the Product Rule.
- **Example.** Differentiate $f(x) = (2x^3 + 1)(3x 2)$.
- Solution 1: f'(x) = uv, where $u = 2x^3 + 1$ and v = 3x 2. Thus $u' = 6x^2$ and v' = 3, and $(uv)' = uv' + vu' = 3(2x^3 + 1) + 6x^2(3x - 2) = 24x^3 - 12x^2 + 3$.
- Solution 2: Expanding the product, $f(x) = 6x^4 4x^3 + 3x 2$. Thus $f'(x) = 24x^3 - 12x^2 + 3$, by Rules (0) – (4).

Quotients of Functions.

- We can derive a rule for the derivative of a quotient in a similar way as we found the Product Rule.
- If u = f(x) and v = g(x), and if x, u, v change by Δx , Δu , Δv respectively, then the change in the quotient u/v is

$$\Delta\left(\frac{u}{\nu}\right) = \frac{u + \Delta u}{\nu + \Delta \nu} - \frac{u}{\nu} = \frac{\left(u + \Delta u\right)\nu - u\left(\nu + \Delta\nu\right)}{\nu\left(\nu + \Delta\nu\right)} = \frac{\nu\,\Delta u - u\,\Delta\nu}{\nu\left(\nu + \Delta\nu\right)}$$

$$\bullet \ \ \text{So} \ \frac{d}{dx} \left(\frac{u}{\nu} \right) = \lim_{\Delta x \to 0} \frac{\Delta(u/\nu)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\nu \frac{\Delta u}{\Delta x} - u \frac{\Delta \nu}{\Delta x}}{\nu \left(\nu + \Delta \nu \right)} = \frac{\nu \frac{du}{dx} - u \frac{\nu}{dx}}{\nu^2},$$
 by a careful application of the **Limit Laws**.

•
$$\lim_{\Delta x \to 0} \frac{v \frac{\Delta u}{\Delta x} - u \frac{\Delta v}{\Delta x}}{v (v + \Delta v)} = \dots = \frac{v \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v \lim_{\Delta x \to 0} (v + \Delta v)}$$

 Note that here Δν → 0 as Δx → 0, since ν = g(x) is differentiable, hence continuous.

The Quotient Rule.

(7) **Quotient Rule:** If f and g are both differentiable, $g \neq 0$, then

$$\left(\frac{f}{g}\right)' = \frac{g\,f' - f\,g'}{g^2}.$$

- In words, the derivative of a quotient is a difference of mixed terms, divided by the square of the denominator.
- **Example.** Differentiate $y = e^x/x$.
- Solution: y = f(x)/g(x), where $f(x) = e^x$ and g(x) = x.
- Thus $f'(x) = e^x$ and g'(x) = 1.
- Hence, by the Quotient Rule,

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{g(x) f'(x) - f(x) g'(x)}{g(x)^2} = \frac{x e^x - e^x \cdot 1}{x^2} = \frac{x - 1}{x^2} e^x.$$

Applications of the Quotient Rule.

- The Quotient Rule enables us to differentiate rational functions.
- Example. Differentiate

$$f(x) = \frac{x^2 + x - 2}{x^3 + 6}.$$

• Solution:

$$f'(x) = \frac{(x^3 + 6)(x^2 + x - 2)' - (x^2 + x - 2)(x^3 + 6)'}{(x^3 + 6)^2}$$

$$= \frac{(x^3 + 6)(2x + 1) - (x^2 + x - 2)(3x^2)}{(x^3 + 6)^2}$$

$$= \frac{(2x^4 + x^3 + 12x + 6) - (3x^4 + 3x^3 - 6x^2)}{(x^3 + 6)^2}$$

$$= \frac{-x^4 - 2x^3 + 6x^2 + 12x + 6}{(x^3 + 6)^2}$$

Derivatives of Trigonometric Functions.

• Recall: The graphs of $\pm \sin x$ and $\pm \cos x$ look like this:

 Given that the derivative of f(x) at x = a is the slope of the tangent to f(x) at a, it's tempting to guess (sin x)' and (cos x)'.

(8) Derivatives of Trigonometric Functions:

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$
, $\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$, $\frac{\mathrm{d}}{\mathrm{d}x}\tan x = \sec^2 x$.

• **Proof.** The derivative of $\tan x = \frac{\sin x}{\cos x}$ uses the **Quotient Rule**:

$$\bullet \ \left(\frac{\sin x}{\cos x}\right)' = \frac{(\cos x)(\sin x)' - (\sin x)(\cos x)'}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Examples

• The graphs of $\tan x$ and $(\tan x)' = \frac{1}{\cos^2 x} = \sec^2 x$.

- **Example.** Differentiate $f(x) = x^2 \sin x$.
- Solution: Using the Product Rule, $f'(x) = x^2(\sin x)' + (\sin x)(x^2)' = x^2 \cos x + 2x \sin x.$

- **Example.** Differentiate $f(x) = \sin(x) \cos(x)$.
- Solution: Using the Product Rule, $f'(x) = (\sin x) (\cos x)' + (\cos x) (\sin x)' = \cos^2 x - \sin^2 x.$

Some Limits.

- The following limits will be useful for differentiating sin x.
- $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$,
- $\lim_{\theta \to 0} \frac{\cos \theta 1}{\theta} = 0$.

- $\sin \theta \leqslant \theta \leqslant \tan \theta$ if $\theta \in (0, \frac{\pi}{2})$.
- $\sin \theta \leqslant \theta \implies \frac{\sin \theta}{\theta} \leqslant 1$. And $\theta \leqslant \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \cos \theta \leqslant \frac{\sin \theta}{\theta}$. **Squeeze**: $\lim_{\theta \to 0} \cos x = \lim_{\theta \to 0} 1 = 1 \implies \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.
- $\bullet \ \lim_{\theta \to 0} \frac{\cos \theta 1}{\theta} = \lim_{\theta \to 0} \frac{\cos^2 \theta 1}{\theta (\cos \theta + 1)} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\cos \theta + 1} = 1 \cdot \frac{0}{1 + 1} = 0. \quad \Box$
- **Example.** Find $\lim_{x\to 0} \frac{\sin 7x}{4x}$.
- Solution: $\lim_{x\to 0} \frac{\sin 7x}{4x} = \lim_{x\to 0} \frac{7}{4} \frac{\sin 7x}{7x} = \frac{7}{4} \lim_{\theta\to 0} \frac{\sin \theta}{\theta} = \frac{7}{4} \cdot 1 = \frac{7}{4}$ where $\theta = 7x$ and $\theta \to 0$ as $x \to 0$.

Differentiating sin(x).

- $(\sin x)' = \cos x$.
- Use the **Addition Formula** sin(x + h) = sin x cos h + cos x sin h:

$$\begin{split} \bullet & \frac{\mathrm{d}}{\mathrm{d}x} \sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} \\ & = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \\ & = \lim_{h \to 0} \left(\sin x \frac{\cos h - 1}{h} + \cos x \frac{\sin h}{h} \right) \\ & = \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\ & = \sin x \cdot 0 + \cos x \cdot 1 \\ & = \cos x. \end{split}$$

• In a similar way, you can show that $(\cos x)' = -\sin x$.

Cotangent, Secant, Cosecant

• The **multiplicative inverses** of $\sin x$, $\cos x$ and $\tan x$ are:

$$\cot x = \frac{\cos x}{\sin x}$$
, $\sec x = \frac{1}{\cos x}$, $\csc x = \frac{1}{\sin x}$.

• Their derivatives can be found by using the Quotient Rule (try!):

$$(\cot x)' = -\csc^2 x$$
,
 $(\sec x)' = \sec x \tan x$,
 $(\csc x)' = -\csc x \cot x$.

- **Example.** Differentiate $f(x) = \frac{\sec x}{1 + \tan x}$.
- Solution: By the Quotient Rule,

$$f'(x) = \frac{(1+\tan x) (\sec x)' - \sec x (1+\tan x)'}{(1+\tan x)^2}$$

$$= \frac{(1+\tan x) \sec x \tan x - \sec x \cdot \sec^2 x}{(1+\tan x)^2}$$

$$= \frac{\sec x (\tan x + \tan^2 x - \sec^2 x)}{(1+\tan x)^2} = \frac{\sec x (\tan x - 1)}{(1+\tan x)^2}$$

using the identity $\tan^2 x + 1 = \sec^2 x$.

The Chain Rule.

- **Example.** What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- Note that $F = f \circ g$ is a **composite**: $f(x) = \sqrt{x}$ and $g(x) = x^2 + 1$.
- If $y = f(u) = \sqrt{u}$ and $u = g(x) = x^2 + 1$ then y = F(x) = f(g(x)).
- The derivative of $f \circ g$ is the **product** of the derivatives of f and g.
- (9) Chain Rule: If y = f(u) and u = g(x) are both differentiable then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$
 - Or, in **prime notation**: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

- Solution 1: $\frac{d}{dx}F(x) = \frac{dy}{du}\frac{du}{dx} = \frac{1}{2\sqrt{u}} \cdot 2x = \frac{1}{2\sqrt{x^2+1}} \cdot 2x = \frac{x}{\sqrt{x^2+1}}$.
- Solution 2: $F'(x) = f'(g(x)) \cdot g'(x) = \frac{1}{2\sqrt{x^2+1}} \cdot 2x = \frac{x}{\sqrt{x^2+1}}$.

The Chain Rule: Examples.

- Recall: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$. Or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.
- From **Outside** to **Inside**: Differentiate the outer function f (at the inner function g) then multiply by derivative of inner function g.
- **Example.** Differentiate (a) $y = \sin x^2$ and (b) $y = \sin^2 x$.
- Solution: $(x^2)' = 2x$ and $(\sin x)' = \cos x$.
- (a) The outer function is $\sin u$, the inner function is x^2 :

$$(\sin x^2)' = \sin'(x^2) \cdot (x^2)' = \cos(x^2) \cdot 2x = 2x \cos x^2$$

(b) $\sin^2 x = (\sin x)^2$: outer function f is u^2 , inner function g is $\sin x$.

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 2u \cdot \cos x = 2\sin x \cos x,$$

where

$$2 \sin x \cos x = \sin 2x$$

by the **Addition Formula** for sin(a + b).

Power and Chain

- If $y = u^n$ and u = g(x) then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = nu^{n-1} \frac{du}{dx}$.
- If $f(x) = g(x)^n$ then $f'(x) = ng(x)^{n-1} \cdot g'(x)$.

- **Example.** Differentiate $f(x) = (x^3 1)^{100}$.
- **Solution:** With $g(x) = x^3 1$ and n = 100, we get $f'(x) = 100(x^3 1)^{99} \cdot 3x^2 = 300x^2(x^3 1)^{99}$.

- **Example.** Find the derivative of the function $g(t) = \left(\frac{t-2}{2t+1}\right)^9$.
- Solution: Combining Power and Chain with the Quotient Rule, $g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \left(\frac{t-2}{2t+1}\right)' = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{(2t+1)\cdot 1 2(t-2)}{(2t+1)^2} = \frac{45(t-2)^8}{(2t+1)^{10}}.$

Exponential Chain.

- Earlier, we found that $(a^x)' = \lim_{h \to 0} \frac{a^h 1}{h} a^x$.
- Also, since $a = e^{\ln \alpha}$, we have $a^x = (e^{\ln \alpha})^x = e^{(\ln \alpha)x}$.
- Chain Rule: $(\alpha^x)' = (e^{(\ln \alpha)x})' = e^{(\ln \alpha)x}((\ln \alpha)x)' = \alpha^x \ln \alpha$.
- $(a^x)' = \ln a \cdot a^x$.

• Example. a = 2:

$$(2^{x})' = \ln 2 \cdot 2^{x} \approx 0.693147 \cdot 2^{x}$$

• Example. a = e:

$$(e^x)' = \ln e \cdot e^x = e^x$$
.

Longer Chains.

- Suppose that y = f(u), u = g(x) and x = h(t). Then $\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dt},$ using the **Chain Rule** twice.
- **Example.** If $f(x) = \sin(\cos(\tan x))$ then working outside to inside, $f'(x) = \cos(\cos(\tan x)) \cdot (-\sin(\tan x)) \cdot \sec^2 x$.

Example. Differentiate y = e^{sec 3θ}.
 Solution: with (e^x)' = e^x, (sec x)' = sec x tan x, (3x)' = 3,
 d/d e^{sec 3θ} = e^{sec 3θ} d/d sec 3θ

$$\frac{d}{d\theta}e^{\sec 3\theta} = e^{\sec 3\theta} \frac{d}{d\theta} \sec 3\theta$$
$$= e^{\sec 3\theta} \sec 3\theta \tan 3\theta \frac{d}{d\theta} 3\theta$$
$$= 3e^{\sec 3\theta} \sec 3\theta \tan 3\theta$$

Derived Yoga.

•
$$\frac{d}{dx}(a f(cx+d)+b) = a c f'(cx+d)$$
.

• **Proof:** Note that $a f(cx + d) + b = (B \circ A \circ f \circ D \circ C)(x)$, where A(x) = ax, B(x) = x + b, C(x) = cx, and D(x) = x + d.

Chain Rule: $(a f(cx + d) + b)' = B'(a f(cx + d)) \cdot A'(f(cx + d)) \cdot f'(cx + d) \cdot D'(cx) \cdot C'(x)$

• The special cases
$$c = -1$$
, or $a = -1$ yield the following fun fact.

- The special cases t = -1, or u = -1 yield the following full lact
- The derivative of an even function is odd, and vice versa.
- **Proof:** $\frac{d}{dx}f(-x) = -f'(-x)$, and $\frac{d}{dx}(-f(x)) = -f'(x)$, by **above**.
- If f is **even** then f(-x) = f(x) and thus -f'(-x) = f'(x). So f'(-x) = -f'(x) and f' is **odd**.
- If f is **odd** then f(-x) = -f(x) and thus -f'(-x) = -f'(x). So f'(-x) = f'(x) and f' is **even**.

Summary: Differentiation Rules.

- 1. Power Rule: $(x^{\alpha})' = \alpha x^{\alpha-1}$, for $\alpha \in \mathbb{R}$.
- 2. Constant Multiple Rule: (c f)' = c f', for any constant $c \in \mathbb{R}$.
- 3. **Sum Rule**: (f+g)' = f' + g'.
- 4. Difference Rule: (f g)' = f' g'.
- 5. Exponential function: $(e^x)' = e^x$.
- 6. **Product Rule**: (fg)' = fg' + gf'
- 7. Quotient Rule: $\left(\frac{f}{g}\right)' = \frac{g f' f g'}{g^2}$.
- 8. Trigonometric functions: $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = \sec^2 x$.
- 9. Chain Rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Exercises.

- 1. Show that $\frac{d}{dx}x^4 = 4x^3$ from first principles.
- 2. Differentiate the following functions.

(i)
$$f(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4$$
.

(ii)
$$f(x) = \frac{1+x}{1-x}$$
.

3. (MA161 Exam, Summer 2011/2012) Consider the piecewise defined function

$$f(x) = \begin{cases} x^2, & \text{if } x \leq 6, \\ qx + r, & \text{if } x > 6. \end{cases}$$

For which values of q and r are both f(x) and f'(x) continuous at x = 6?

4. Use the limit laws to show that (f(x) + g(x))' = f'(x) + g'(x).

[Hint. Complete and justify
$$\lim_{h\to 0} \frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h} = \cdots = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} + \lim_{h\to 0} \frac{g(x+h)-g(x)}{h}.$$
]

Exercises.

- 5. Find the 27th derivative of cos(x).
- 6. Differentiate $f(x) = e^{kx}$ for a constant $k \in \mathbb{R}$.
- 7. Differentiate the following functions.
 - (a) $f(x) = 4x^3 + e^{4x}$.
 - (b) $f(x) = x^2 \cos(x)$.
 - (c) $f(x) = \cos(x)/x^3$.
 - (d) $f(x) = \sqrt[3]{x^2 + 2x + 1}$.
 - (e) $f(x) = (x^2 + 1)^6$.
- 8. Find the tangents to the function $f(x) = x^2 + x 6$ at the points x = -4 and x = 2.
- 9. Find the equation for the tangent to $f(x) = e^{-x} \sqrt{x+1} + 1$ at x = 0.
- 10. It is possible to express $f(x) = e^x$ as the infinite series

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4} + \dots + \frac{1}{n!}x^{n} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. Use this expression to show that $\frac{d}{dx}e^x = e^x$.